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A constitutive model for muscle properties
in a soft-bodied arthropod

A. Dorfmann™*, B. A. Trimmer? and W. A. Woods Jr®

' Department of Ciwvil and Environmental Engineering and the Biomimetic Devices
Laboratory, ?Department of Biology and the Biomimetic Devices Laboratory, and
3Department of Biology, Tufts University, Medford, MA 02155, USA

In this paper, we examine the mechanical properties of muscles in a soft-bodied arthropod
under both passive and stimulated conditions. In particular, we examine the ventral interior
lateral muscle of the tobacco hornworm caterpillar, Manduca sexta, and show that its
response is qualitatively similar to the behaviour of particle-reinforced rubber. Both
materials are capable of large nonlinear elastic deformations, show a hysteretic behaviour
and display stress softening during the first few cycles of repeated loading. The Manduca
muscle can therefore be considered as different elastic materials during loading and unloading
and is best described using the theory of pseudo-elasticity. We summarize the basic equations
for transversely isotropic pseudo-elastic materials, first for general deformations and then for
the appropriate uniaxial specialization. The constitutive relation proposed is in good
agreement with the experimental data for both the passive and the stimulated conditions.

Keywords: Manduca sexta; caterpillar muscles; striated muscles; tetanic stimulus;
anisotropy; constitutive modelling

1. INTRODUCTION

In addition to their well-known function as biological
motors, muscles also act as brakes, struts, beams and
springs (Biewener 2003). For most animals with stiff
skeletons, these different muscle functions are trans-
mitted through tendon attachments to the movements
of jointed levers. However, for animals that lack rigid
skeletons (e.g. worms, caterpillars and molluscs),
muscles are more directly coupled to overt movements
and the material properties of soft tissues play a more
central role in soft-bodied locomotion (Trueman 1975).
Any attempt to understand how such animals control
their movements must take into account the funda-
mental material properties of the muscles. In the study
presented here, we examine the muscles of the tobacco
hornworm caterpillar, Manduca sexta, and show that in
a steady state (passive or stimulated), these muscles
behave as elastomeric materials. A constitutive model
is developed that describes the pseudo-elastic responses
of a specific muscle and compares it with particle-
reinforced natural rubber.

Manduca is commonly used in physiological studies
and has recently served as a biological model for a new
class of soft-bodied robots (Trimmer et al. 2006). The
muscles, ca 70 per larval segment, are layered beneath
the soft cuticle to which they are attached. Most lie
entirely within a single segment and are innervated by a
single motor neuron (e.g. Levine & Truman 1985).
These muscles are tasked to function quite differently
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from skeletal locomotory muscles such as those in adult
insects, which typically contract rapidly while under-
going limited shortening. For example, the wing
muscles of adult Manduca cycle through a strain of ca
7% during flight, shortening in ca 0.018 s (Stevenson &
Josephson 1990). In contrast, in crawling Manduca
caterpillars, some muscles cycle through strain ranges
of ca 30% and take a full second to shorten during a
typical crawling cycle (Woods et al. submitted).
Considerably higher strain ranges are probably encoun-
tered during other natural motions (Brackenbury
1997). The muscles can develop force in vitro over a
strain range from 0.5 to 1.5 times their resting length.
Compared with typical striated skeletal muscle, cater-
pillar muscles can be described as slow and stretchy.
Underlying these functional differences are
differences in muscle structure. Vertebrate skeletal
muscles, the most widely studied locomotory muscle
type, are organized into short, distinct sarcomeres, with
6-8 thin myofilaments associated with each thick
filament and very distinct aligned Z-bands. In contrast,
caterpillar muscles show less organization with long
sarcomeres, unevenly aligned and less distinct Z-bands,
and 10-12 thin myofilaments surrounding each thick
filament (Rheuben & Kammer 1980). In addition,
skeletal muscle is attached to bone by tendons, which
make the major contribution to the elastic properties of
the muscle-tendon system (Biewener & Roberts 2000).
Caterpillar muscle, in contrast, lacks associated dis-
crete tendons. Any capacity for elastic energy storage
therefore arises from properties of both the muscle

This journal is © 2006 The Royal Society
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contractile elements and the extracellular tissues
including collagen.

Since soft-bodied animals change shape, the passive
properties of their muscles are particularly important. In
common with vertebrates, invertebrate striated muscle
contains elastic proteins that affect contraction and
stretching (Ziegler 1994). The best characterized of
these molecules is the giant protein, I-connectin, found
in the muscles of barnacles, beetles, flies (both larvae and
adults) and crayfish, where it appears to determine
passive elasticity. This protein contains elastic domains
that produce transient tension changes with complex
time-constant decay (Fukuzawa et al. 2001). A search of
the recently released silkmoth Bombyx mori genome by
Shimada et al. (2004) shows that titin- and kettin-like
proteins are probably present in the Lepidoptera. The
elastic properties arising from these elements are of
particular interest because, unlike skeletal muscle which
is associated with joints that limit degrees of freedom,
caterpillar muscle is associated with a hydrostatic
skeleton that affords nearly limitless degrees of freedom.
Yet, the central nervous system of Manduca is a
comparatively simple one, raising the question of whether
some information processing is embedded in the passive
properties of the muscle. This underscores the importance
of a constitutive model describing these properties.

In this paper, we present experimental data of the
ventral interior lateral (VIL) muscle of the Manduca in
both the passive and the stimulated state. The muscle is
subjected to periodic loading—unloading cycles to
precondition the material for a reproducible stress—
stretch response. During the first few cycles of repeated
loading to the same displacement magnitude, stress
softening occurs which is qualitatively similar to the
Mullins effect in particle-reinforced natural rubber
(Dorfmann & Ogden 2004).

The Manduca muscle is considered a nonlinear
pseudo-elastic composite with an isotropic base
material embedding a number of fibres. These introduce
a preferred direction and the material is said to be
transversely isotropic. During tetanic simulation, the
fibres increase the cross-bridge formations between
actin and myosin, which then induce an increase in the
macroscopic material stiffness.

We start in §2 by showing similarities between the
mechanical response of the Manduca muscle and
carbon-black-reinforced natural rubber. It is shown
that both the materials are capable of large nonlinear
pseudo-elastic deformations and display stress soft-
ening during the first few cycles of periodic loading and
unloading. In section 3, we summarize the basic
equations of nonlinear elasticity of transversely iso-
tropic materials, first for general deformations and then
for the appropriate uniaxial specialization. An overview
of the general theory of pseudo-elasticity, originally
introduced by Ogden & Roxburgh (1999), is given next
and adapted to capture uniaxial loading—unloading of
transversely isotropic materials.

Section 4 contains a brief discussion on specimen
preparation, measurement of the cross-sectional area
and muscle stimulation. The experimental data for
caterpillar muscle in the passive and the stimulated
states demonstrate both the hysteretic response and
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stress softening. After four loading—unloading cycles,
the stress—stretch response becomes stabilized. In
section 5, we use the theory of §3 to develop a model
for the Manduca muscle in the passive and the
stimulated states. The reproducible stress—stretch
response is used to determine material parameters
and a good agreement with the presented data is shown.

2. SIMILARITIES BETWEEN SOFT BIOLOGICAL
TISSUE AND RUBBER

The mathematical foundations first developed to charac-
terize the highly nonlinear behaviour of unfilled and
carbon-black-reinforced rubber have been successfully
adapted to describe the mechanical response of biological
tissue. The mechanical response of both the materials is
qualitatively similar. Both are capable of large nonlinear
pseudo-elastic deformations and display stress softening
during the first few cycles of repeated loading to the same
displacement magnitude. However, there is an important
difference. Biological tissue is composed of an isotropic
matrix embedding multiple oriented families of protein
fibres. Therefore, the material response is best described
as anisotropic. Rubber response, on the other hand, is
generally isotropic.

Pseudo-elastic solids have been defined by Fung
(1980) as materials with a hysteretic characteristic
when subjected to cyclic loading and unloading, i.e. the
loading—unloading responses do not coincide, even
though the body returns to its original state. The
material is considered an elastic material during
loading and a different elastic material during unload-
ing. The pseudo-elastic behaviour of a biological
material and the response of a carbon-black-reinforced
natural rubber compound during loading and unloading
are shown in figure 1.

When an unfilled or carbon-black-reinforced rubber
is subjected to cyclic loading with a fixed amplitude
from its initial natural configuration, the stress required
on reloading is less than that on the initial loading for
elongations up to the maximum elongation achieved.
The stress differences in successive loading cycles are
largest during the first and second cycles and become
negligible after ca 6-10 cycles, depending on the
amount of filler and maximum extension. When this
happens, the material loading—unloading response is
said to have stabilized. Subsequent loading—unloading
occurs along the stabilized path as long as the
maximum deformation (alternatively called the level
of preconditioning) is not exceeded. This phenomenon
is known as the Mullins effect and described in detail by
Dorfmann & Ogden (2004) and Horgan et al. (2004).
Similarly, for biological materials, it is necessary to
perform a number of loading—unloading cycles to
precondition the material for a repeatable and
predictable stress—strain response.

Figure 2 illustrates some of these similarities by
comparing data from uniaxial tension tests of carbon-
black-filled natural rubber and non-stimulated
(passive) muscles harvested from the caterpillar
Manduca. To monitor the progression of stress soft-
ening and to determine the ultimate stress—deformation
response, periodic loading, unloading and reloading
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Figure 1. Pseudo-elastic response of a preconditioned Manduca muscle (a) and of a carbon-black-reinforced natural rubber
specimen (b).
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Figure 2. Preconditioning of a passive caterpillar muscle (@) and a carbon-black particle-reinforced rubber specimen (b) with
maximum stretches A=1.53 and 3, respectively.

tests were performed at constant strain rate and at
constant temperature of 25°C. During the first series of
tests, a single muscle from the caterpillar was subjected
to four cycles of preconditioning up to a pre-selected
stretch A=1.53. The filled natural rubber specimen was
subjected to six loading—unloading cycles up to a
maximum stretch of A=3. The results, reported as
nominal stress versus stretch A in figure 2, show that the
stress—stretch responses of the biological tissue and the
natural rubber compound are qualitatively similar,
even though they differ in strength and stiffness as
expected. In the second series of experiments, an
additional muscle from a caterpillar and an additional
natural rubber specimen were each subjected to
periodic loading up to two different, but fixed,
stretches. The biological tissue was subjected to four
loading—unloading cycles up to A=1.2 and the natural
rubber specimen to six cycles up to A=1.5. After
completion of the unloading cycles, each specimen was
then loaded to a stretch of A=1.4 (A=2) and again
subjected to four (six) cycles. A comparison of these
results in figure 3 shows that the stress—stretch

J. R. Soc. Interface (2007)

responses are again qualitatively similar. An apparent
difference is the relative amount of energy dissipated
during cyclic loading. For the present choices of test
specimens, the difference between energy input during
loading and energy returned during unloading is larger
for the biological tissue.

The pioneering investigation by Wohlisch (1926)
first addressed similarities between natural rubber and
biological tissues, even though he recognized the widely
different chemical constitutions. In particular, Wéhlisch
used the phenomenon of thermal agitation of long-
chain molecules to explain the contraction of tendons
and of stretched natural rubber specimens on heating.
Wohlisch used these important findings to replace the
concept of rigid molecular structures with flexible long-
chain molecules capable of internal vibrations and
rotations owing to thermal fluctuations. Wohlisch
concluded that the elastic force in the material is
owing to thermal motion of long, flexible and partially
stretched chain molecules. The molecular explanation
of the thermoelastic behaviour of rubber and biological
tissue was also given by Meyer et al. (1932).
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Figure 3. Periodic uniaxial extension tests of a passive caterpillar muscle (@) and a particle-reinforced rubber specimen (b) with
two different but constant maximum elongations.

In particular, Meyer et al. (1932) pointed out that the
motion of a molecular segment is influenced by the
movement of neighbouring groups and independent of
the movement of molecular segments further away.
They also introduced the concept of statistically
determined configurations of molecular chains and
determined that the probability of assuming a folded
or crumpled configuration is much higher than a
straight form. In other words, there is only one straight
but many twisted configurations that are possible
(Meyer 1952). The possibility that a long-chain
molecule assumes a statistically determined configu-
ration and the exchange of energy with surrounding
atoms are now fully accepted and are referred to as the
kinetic theory of rubber elasticity.

The correspondence between rubber-like solids and
muscles was first observed by Karrer (1933). Karrer
regarded both materials as having a network of
macromolecules bridged by permanent and/or tempor-
ary cross-links or junctions, entanglements and van der
Waals forces. In a simplistic representation, the
position and the number of these cross-links are not
fixed, but are assumed to alter under loading, resulting
in transient networks. As a consequence, the behaviour
of such materials is different from, for example, metals
where an ordered assembly of atoms is bonded by
strong interatomic forces to form a relatively rigid
structure. The concept of kinetic theory of rubber
elasticity and the similarities of the pseudo-elastic
behaviour of natural rubber and muscle fibres are also
described in detail in the monograph by Treloar (2005).
These similarities support the use of recent advances in
theoretical and computational modelling of rubber-like
solids to the field of biomechanics of soft tissue.

3. BASIC EQUATION
3.1. Kinematics

We consider the Manduca muscle as a pseudo-elastic
body, which in its unstressed configuration is not
stimulated and not subjected to any mechanical

J. R. Soc. Interface (2007)

loads. Let the region in the three-dimensional Eucli-
dean space occupied by the muscle in this configuration
be denoted By, i.e. the natural configuration of the
muscle in the animal. For the passive as well as the
stimulated muscle, we take the geometric configuration
By to be the reference configuration from which to
measure any subsequent deformation generated by the
application of mechanical loads. The geometric con-
figuration By for a change in stimulation can be
maintained, if necessary, if appropriate mechanical
loads are applied.

We denote by X the position vector of a material
point within the body in the reference configuration By
relative to an arbitrary chosen origin. Suppose the
application of mechanical loads deform the body, so that
the point X occupies the new position z=x(X) in the
time-independent deformed configuration, which we
denote by B. The vector field x, which is a one-to-one,
orientation-preserving mapping with suitable regularity
properties, describes the deformation of the body.

The deformation gradient tensor F relative to By,
and its determinant, is

F = Grad 1, J=det F>0, (3.1)

where Grad denotes the gradient operator with respect
to X and wherein the notation Jis defined. Denote by
dV and dv volume elements in B, and B, respectively,
then we have the relation

dv=JdV, (3.2)

and for a volume preserving (isochoric) deformation
J=det F=1. The Cartesian components of F are given
by F;=0z;/0X;, where X; and z;, i=1, 2, 3, are the
Cartesian components of X and x, respectively. For a
detailed discussion on the kinematics of continua, we
refer to, for example, Ogden (1997) and Holzapfel
(2001).

The unique polar decompositions of the deformation
gradient F are

F =RU = VR, (3.3)
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where R is a proper orthogonal tensor; and U and V are
positive definite and symmetric, respectively, the right
and the left stretch tensors. These can be expressed in
spectral form. For U, for example, we have the spectral
decomposition

3
U=> ru”@u (3.4)
=1
where the principal stretches 2,>0, i€ {1, 2, 3}, are the
eigenvalues of U; u” are the (unit) eigenvectors of U;
and ® denotes the tensor product. For incompressible
materials,

J = det F = A112A3 =1. (35)
Using the polar decomposition (3.3), we define
C=F'F=U’, B=FF' =V’ (3.

which denote the right and the left Cauchy—Green
deformation tensors, respectively. The three principal
invariants of C, equivalently B, are defined by

L=tC, L =_[trC)—t(CY),
2 (3.7)
I; = det C = J%,

where tr is the trace of a second-order tensor.
Throughout the following work, we use the term
‘fibre’ in the mechanical sense. In muscles, this will
include actin, myosin and other proteins arranged
uniaxially. In a macroscopic sense, the Manduca muscle
has therefore a single preferred direction and can be
regarded as transversely isotropic. Let the directional
reinforcement provided by the fibres be defined by the
unit vector A in the undeformed configuration.
Additional invariants, denoted I, and I;, are associated

with the fibre direction and are given by

I,=A-CA=FA-FA=a-a, (3.8)
I;=A-C*A = a-Ba, (3.9)

where we introduced the notation a=F A to define the
mapping of A under the deformation F.

There is a simple geometric interpretation of the
invariant I;. The square root of I, provides changes in
the length of the fibre in the direction A. Let, for
example, the fibre in the undeformed configuration be
directed along the unit vector %;, where %;, %, 3 are the
rectangular Cartesian basis vectors, then I,= Cj;. If the
fibre direction A is again taken in the %; direction, then
I;= C} + C% + C%. The invariant I, by means of O,
represents the changes in the length in the fibre
direction and additionally, by means of C}s and Cis,
shear deformation.

3.2. Constitutive equations

Let the unit vector A be a preferred direction in the
reference configuration By. The material response is
indifferent to an arbitrary rotation about the direction
A. Also the material response is not altered by a change
of direction from A to — A. Following the analysis of
such materials given in Spencer (1971) and Ogden
(2001a), for example, we define a transversely isotropic
material as one for which the strain energy, denoted W,
is an isotropic function of the two tensors F and A® A.

J. R. Soc. Interface (2007)

The form of Wis then reduced to dependence on the five
independent invariants I, I, ..., Iy and we write

W= W(117[2,-[3,I4315)~ (310)

Restricting attention to incompressible materials
with I3=1, the strain energy is then a function of the
remaining four invariants. The response of a con-
strained transversely isotropic material, with fibre
direction corresponding to A in the reference configu-
ration, is given by the nominal stress S and the Cauchy
stress o. They are given, respectively, by

ow 4 ow
S—T pF—, 0'—F¥ pl,
where p is a Lagrange multiplier associated with the
constraint (3.5). To write the explicit forms of S and o,
we use the formulae

(3.11)

oL _ 7 0L _ T _TpgT
oF =2F'. SE=2ALF'—F'FFh), (312
%z?A@FA, a—IF5=2(A®FCA+CA®FA).
(3.13)

A direct calculation then leads to

S =2(W; + L Wy)F' —2W,CF" + 2W,A®FA

+2Ws(A®FCA + CA®FA)—pF ', (3.14)
o = Q(Wl + [1 WQ)B_2WQBQ + 2W4a®a
+2W;(a®Ba +Ba®a)—pl. (3.15)

When the dependence on I; and Iy in equations
(3.14) and (3.15) is omitted, the associated expressions
for an isotropic material are obtained.

For fibre-reinforced materials, it is common to write
the strain-energy function as the sum of two terms, one
associated with the isotropic properties of the base
matrix and the second to introduce transverse isotropy
in the mechanical response. We therefore consider a
strain-energy function given by

W = Wi (1, ) + Wy, (I, I5), (3.16)

where the term W, represents the isotropic matrix
material and Wy, accounts for the directional reinforce-
ment, the latter also known as the reinforcing model
(Qiu & Pence 1997; Merodio & Ogden 2003). We
consider, following Qiu & Pence (1997) and Merodio &
Ogden (2005), an incompressible neo-Hookean material
augmented with a reinforcing model that depends only
on I; and has the form
1
W =g ul(h=3) + pe(li— 1)?.
The shear modulus of the base material is denoted by u
and the strength of the reinforcement in the fibre
direction is given by u.. For the strain-energy function
(3.17), both the strain energy and the stress vanish in
the undeformed configuration.
The experimental data in §4 show that the muscle of
Manduca is subjected to uniaxial loading—unloading in
the fibre direction. Therefore, we are interested in the

(3.17)
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response of an incompressible transversely isotropic
material under simple deformations in the fibre direction.

3.2.1. Uniazial loading in the fibre direction. In the
simple tension (or compression) specialization, we take
the principal stretches A,= A3 and use the notation

do = A7V,

satisfying the incompressibility condition (3.5). From
equations (3.7) and (3.8), we have

L =2+ I, =2, (3.19)
and the strain energy then depends on the one
remaining independent stretch, which we denote by
W (1) and write

W(2) =

W(I,, 1,). (3.20)

Writing the strain energy (3.17) as a function of A, we
obtain

VAV(") = 5#

In this case, the only non-zero stress component is in
the fibre direction and g9=03=0. The Cauchy stress
associated with 4 is

(42207 =3) + (A —1)%.  (3.21)

AW (2)
da

o=03 =42 = w(F® =271 + 2up (I, = 1)1,

(3.22)

3.3. Pseudo-elasticity

The theory of pseudo-elasticity, originally developed by
Ogden & Roxburgh (1999) to account for the Mullins
effect in carbon-black-reinforced elastomers, modifies
the elastic strain-energy function W(F) by incorporat-
ing an additional variable n. Thus, we write

W = W(F,n). (3.23)

The inclusion of 5 provides a means of changing the form
of the energy function during the deformation process
and hence changing the character of the stress—stretch
response. In general, the response of the material is then
no longer elastic and W(F,n) is referred to as a pseudo-
energy function. In this section, we provide an overview
of the main ingredients of the general theory of pseudo-
elasticity. Appropriate specifications are made in §5.

The variable 7 may be inactive or active; activating
n introduces a change in the material properties. A
change from inactive to active may be induced, for
example, when unloading is initiated.

If the variable 7 is inactive, we set it to the constant
value unity and write

Wy(F) = W(F,1), (3.24)

for the resulting strain-energy function. In equation
(3.24) and in what follows, the zero subscript is
associated with the situation in which 5 is inactive.
For an incompressible material, the nominal stress

J. R. Soc. Interface (2007)

associated with inactive 7, denoted Sy, is given by

[0 —1
F)—pF
aF ( ) Po )
If n is active, we take it to depend on the deformation
F. The nominal stress is then given by

oW AW an

G (Fon) + 5 (Fon) 5L (F)

S, = detF=1.  (3.25)

S = —pF

(3.26)
det F =1.

Following Ogden & Roxburgh (1999), we take 7 to be
given implicitly by the constraint

ow

F,n) =0, 3.27
o (F,n) = (3.27)
which uniquely defines n in terms of F. We may write

the solution to equation (3.27) formally as
n = n(F).

Then, the expression of the nominal stress (3.26)

simplifies and is given by

oW
SF (Fym)—

whether or not 7 is active, where, when 7 is active, the
right-hand side is evaluated for n given by equation
(3.28). It is convenient to introduce the notation w for
the resulting (unique) strain-energy function. Thus,

w(F) = W(F,n.(F)), (3.30)

and the nominal and Cauchy stress tensors for
incompressible materials are given by the standard
relations
ow ow
S=_—(F)—pF" =F_—(F)—pL
= (F)=pF L, o =F L(F)—p
Thus far, we have not specified the form of the
dependence of Won 7, or, more particularly, the form of
the function 7.(F) in equation (3.28).

(3.28)

S = pF det F =1, (3.29)

(3.31)

8.8.1. Uniaxial loading—unloading in the fibre direction.
When specialized to transversely isotropic materials
subject to uniaxial loading—unloading in the fibre
direction, we take g9=03=0 and write ¢, =0¢. Similar
to §3.2.1, we denote A; =4, the prlncipal stretch in the
fibre direction and do=Ag=A""Y

The modified energy in equatlon (3.20) becomes

W(& 77) = W(Ih 147 77)7 (332)

and for inactive n from equation (3.24), we have the
expression

Wo(2) = W(A,1). (3.33)
The associated Cauchy stress for inactive 7 is given by
dW,
=2 A 3.34
70 =120 ), (334
and for active 7, it has the form
oW
=A—(A7). 3.35
o =15 Go) (335)
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ventral interna
lateral (VIL) muscle

Figure 4. A fifth instar Manduca sexta caterpillar illustrating the position of the ventral internal lateral muscle in the third
abdominal body segment.

Equation (3.27) is modified and we obtain

oW
A A7 = 07
o (2,m)
which can be solved explicitly for . This relation, using
the notation from equation (3.28), has the form

(3.36)

n = nc(4). (3.37)

Following equation (3.30), we obtain the energy
function for active n. Using the notation @(}), we have

w(4) = W(4,m.(4)), (3.38)

and the Cauchy stress in the loading direction for
inactive and active 7 is given by
dw

=1—(A).

o=25 @

The theory of pseudo-elasticity outlined earlier and

described in more detail by Ogden & Roxburgh (1999)

and Ogden (2001b) is a very general framework and

allows considerable flexibility in the choice of specific

models.

(3.39)

4. EXPERIMENTAL RESULTS

Since Manduca lacks a stiff skeleton, its muscles are
attached directly to infoldings of the body wall (apo-
demes). The muscles are organized in repeated segments
along the body length and in several overlapping layers.
Aswith all striated muscles, their activity is controlled by
depolarization-initiated release of transmitters from
motor nerve terminals. The amount, and time course, of
transmitter release is a function of the pattern and
frequency of action potentials in the motor neuron. Trains
of action potentials (tetany) stimulate muscles to develop
force, or to shorten, by cycling cross-bridge formation
between actin and myosin myofilaments (Huxley 2000a).
During each step of a crawl in Manduca, the VIL in each
body segment is activated by a brief burst (lessthan 1 s) of
action potentials with a mean frequency of ca 20 Hz.
During other movements, the muscle can be activated by
bursts of action potentials at 30-40 Hz for several
seconds. In this paper, we will model the muscle both in

J. R. Soc. Interface (2007)

its unstimulated (passive) state and during a sustained
tetanic stimulation.

4.1. Muscle preparation

To assess preconditioning, pseudo-elasticity and stiffen-
ing owing to stimulation, a series of periodic uniaxial
extension tests were carried out on VIL of the third
abdominal segment of larval Manduca.

Following the method described by Bell & Joachim
(1976), larvae were raised on an artificial diet at 26°C
under long-day conditions (17h light/7h dark).
Animals on the second day of the fifth instar were
used for testing using the following procedure:

(i) Preliminary dissections were made to map the
location of the attachment points of the muscle,
VIL, in the third abdominal segment to exterior
markers (figure 4).

(ii) Animals were anaesthetized by chilling on ice,
and the length of VIL was measured using the
markers determined in step (i). A full-length
dorsal incision was made and the gut, head
and posterior half of the terminal segment
removed.

(iii) The cuticle, intact muscles and nerves were
exposed in physiological saline, with the
interior of the cuticle facing upward. During
dissection, the saline was perfused with air
approximately every 5 min.

(iv) VIL was dissected out leaving a small portion
of attached cuticle at both ends.

(v) The two motor neurons innervating VIL,
project through the dorsal nerve (Levine &
Truman 1985). Therefore, the dorsal nerve and
its segmental ganglion were kept intact, all
other nerves were severed. The muscle was
stimulated by applying bursts of supra-
maximal voltage pulses to the dorsal nerve
using a suction electrode.

(vi) Experiments were completed within 2 h of the
time of initial incision.
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4.2. Measurement of cross-sectional area

Microscopic analyses of VIL revealed a total of 14
individual 4-5 mm long fibres. The direct measurement
of the cross-sectional area of the muscle is either invasive
or at least risks injury to the individual fibres. Therefore,
we determined the undeformed cross-sectional area of
the muscles using a relationship derived from invasive
measurements of separate muscle preparations.

Since individual fibres are difficult to distinguish
clearly in intact muscles, we removed fibres from resting-
length single-muscle preparations until the remaining
fibres could be clearly imaged from overhead. Since the
fibres are not circular but rather elliptical in cross-
section, an overhead image provides only the major axis
dimension. We therefore imaged the cut ends of stained
fibres teased into a vertical position. The dimensions
were calculated in NIH ImAGEJ software using 169 pm
diameter polymer beads for calibration (Duke Scientific
Corp., Palo Alto, CA, USA) included in the images as a
reference. The ratio of major to minor axis lengths was
used to calculate cross-sectional area of fibres from
overhead image dimensions. Mean cross-sectional area
was multiplied by the number of fibres. The resulting
value was used to calculate cross-sectional area of
muscles used in strain cycling measurements from
their resting length with the assumption that muscle
proportions increased or decreased isometrically.

4.83. Muscle stimulation

During tetanic stimulation, VIL develops force compara-
tively slowly, reaching peak force up to several seconds
after initiation of stimulus (figure 5). There is a
considerable variation between preparations, with peak
forcerise time ranging from 1 to 6 s. Once reaching a peak
value, force under sustained stimulation declines, again
with much variation in time course between muscle
preparations. Generally, preparations that develop force
more slowly also sustained force more uniformly through-
out the final 8 s of a 10 s tetanus. Initiating strain cycling
2 s after initiating stimulus allowed even more slowly
contracting preparations to reach more than 90% of peak
force before strain cycling began.

4.4. Strain cycling and force measurement

Muscles were pinned by the attached cuticle at each end
in a horizontal bath of saline. One end was pinned to the
edge of an elastomer platform in the bath, while the
other was secured by a hook to an Aurora 300B-LR
lever-arm ergometer (Aurora Scientific, Inc., Aurora,
Ontario). The shaft of the hook and the movement of the
lever arm were horizontal, and the hook was attached to
thelever arm by a small tunnel of epoxy that allowed free
movement of the hook only in the horizontal plane.

Bath temperature was maintained at 25°C by a
thermostatically controlled Peltier device built into the
stage supporting the bath. Saline was continuously
exchanged and kept aerated.

Lever arm motion was controlled and force recorded
by DMC software (Aurora Scientific, Inc.) via a National
Instruments NiDaq 6024E interface. Lever arm position
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Figure 5. Time course of force developed by VIL in vitro held
at the length measured in the resting animal and given a 10 s
electrical stimulus via the muscle’s motor neuron. In this
preparation, from which the data in figure 6 were obtained,
the stimulated muscle sustained greater than 90% of peak
force for the final 8 s of the stimulus train, reaching a peak
force 5.9 s after initiation of stimulus.

was updated at 1800 Hz and force and position were
recorded at 2000 Hz. Data were filtered and exported in
DMA software (Aurora Scientific, Inc.).

For measurements of VIL under tetanic stimulus, a
suction electrode was applied to the dorsal nerve. Since
peak force response time for VIL was 1.5-6s, a
supramaximal stimulus (40 volt, 40 Hz) was initiated
2 s before strain cycling began and sustained through-
out strain cycling. The biological data shown here is a
representative example of five tested specimens.

4.5. Experimental data

The contractile properties of striated muscles are
similar across species. In general, muscle force is
proportional to its cross-sectional area and speed is
proportional to its length. Muscles also develop their
greatest power at approximately one-third the maxi-
mum unloaded speed (Huxley 2000b). Force generation
in most striated muscles is limited to a narrow range of
movements (with strains of 10-20% being typical). This
arises because overlap of thick and thin myofilaments
decreases as the fibres stretch, while the Z-disc prevents
actin and myosin from penetrating into adjacent
sarcomeres during contraction (e.g. Holmes & Geeves
2000). This non-continuous nature of the axial fibres
results in a narrow peak of maximum force develop-
ment centred on the resting length of the muscle; on
each side of this peak, the maximum stimulated
isometric force is significantly less. It is likely that the
gradual decrease in stiffness, seen during loading of
stimulated VIL and shown in figure 6b, represents a
progressive decrease in available overlap for cross-link
formation. This interpretation is supported by the
relatively linear loading stiffness of a passive muscle
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Figure 6. Preconditioning of a caterpillar muscle with maximum stretch of A=1.15. (a) Results of a muscle in the passive state,
while (b) for stimulated condition. Data for the stimulated condition were obtained during the final 8s of a 10 s stimulus,
corresponding to the period during which the same muscle preparation sustained force within 90% of peak values under tetanic

isometric stimulation.

shown in figure 6a. In a passive muscle, bridge
formation between actin and myosin would be expected
to be minimal.

Interestingly, the loading hysteresis for VIL is not
particularly large despite the application of a 15%
strain. At least part of the explanation may lie in the
extended range over which Manduca larval muscles can
develop force. This ability is presumably an adaptation
for long movements without the advantage of a rigid
lever system. Larval muscles of holometabolous insects,
such as Manduca, have several structural features
which suggest that they are supercontracting (Gold-
stein & Burdette 1971; Hardie 1976; Rheuben &
Kammer 1980; Duch et al. 2000; Royuela et al. 2000;
Schwartz & Ruff 2002). For example, muscles in
Manduca caterpillars are striated but have long
sarcomeres, very high tetanus-to-twitch for ratios and
much slower force development (Rheuben & Kammer
1980). They also develop force at lengths from 0.5 to 1.5
times resting length (Garmirian & Trimmer, unpub-
lished work), a range associated with supercontracting
muscles in tsetse flies, which have both supercontract-
ing and non-supercontracting visceral muscles
(Rice 1970). Although it is not known whether
Manduca larval muscles have the perforated or
incomplete Z-discs that characterize supercontracting
muscle (Herrel et al. 2002), the Z-discs are at least
described as ‘poorly defined and irregularly arranged’
(Rheuben & Kammer 1980). Supercontracting muscles
are found in both vertebrates and invertebrates and
are often associated with hydrostatic movements
(Osborne 1967; Rice 1970; Candia Carnevali 2005).

One prediction of this interpretation of the defor-
mation-dependent loading stiffness is that conventional
striated (non-supercontracting) muscle will exhibit a
more marked loading hysteresis when subjected to such
large strain. This is because in striated muscle, the
sarcomeres are aligned and the degree of actin and
myosin overlap throughout the muscle will be
determined directly by the degree of stretch. In
contrast, in Manduca muscles, the sarcomeres are less
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distinct which could lead to a greater heterogeneity in
fibre overlap.

5. NUMERICAL RESULTS
5.1. A model for the Manduca muscle

In this section, we modify the pseudo-elastic model that
was used previously by Dorfmann & Ogden (2003) to
describe loading, partial unloading and reloading of
particle-reinforced rubber. The Manduca muscle is
taken to be incompressible and transversely isotropic
and we use a pseudo-energy function for simple tension
in the form

W(,m) = nWo(2) + ¢(n),

where the function ¢ accounts for the energy dissipated
during a loading—unloading cycle. For consistency with
equation (3.33), the function ¢, for inactive 7, must
satisfy the condition ¢(1)=0. Using the expression of
the reinforcing model for uniaxial loading in the fibre
direction (3.21), equation (5.1) with n=1 has the form

(5.1)

Wo(d) = Wi, 1) = 5lG2 + 207 =3) + w02~ 1),
(5.2)

where u, describes the increase in strength of the fibres
owing to tetanic stimulation, which also depends on the
amount of extension A, i.e. pu.=wu.(4). The associated
Cauchy stress is then given by

dW, (2 _
oy = AT(;() =pu(P =21 + w32 -1)
2 (5.3)
x (o, + 21 due
Re ™00 "an )

where the subscript ‘0’ has been attached to W and ¢ to
indicate that these expressions are used to describe the
loading path.

Unloading may take place from any point on the
loading path. The start of unloading is taken as
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Figure 7. Experimental data (a) and numerical data (b) for preconditioned loading—unloading response of Manduca muscle in
passive (dashed line) and stimulated (solid line) conditions.

the signal for  to be active and to change the form of

the energy function. The Cauchy stress during unload-

ing is then given by

dW,
dAa

which shows that stress softening during unloading

requires that n<1, with equality only at the point

where unloading is initiated. The dependence of W on n
is given by equation (3.36) and has the form

¢'(n) =—=Wy(2).

It is important to point out that the value of 7
derived from equation (5.5) depends on the value of the
principal stretch A, attained on the loading path, as
well as on the specific forms of Wy(4) and ¢(n)
employed. Since n=1 at any point on the loading
path from which unloading is initiated, it follows from
equations (5.1) and (5.5) that

¢/(1) = _WO(AID) = _Wmv

wherein the notation W, is defined. This is the current
maximum value of the energy achieved on the loading
path. In accordance with the properties of W, W,
increases along a loading path. In view of equation
(5.6), the function ¢ depends on the point from which
unloading begins through the energy expended on the
loading path up to that point.

When the material is fully unloaded, with A=1,
attains its minimum value 7,,;,. This is determined by
inserting these values into equation (5.5) to give

¢/(T'min) = _WO(I) = 07

where we assumed that no elastic energy is stored in the
reference configuration corresponding to A=1. The
residual (non-recoverable) energy ¢(nu,) is given by
equation (5.1) and has the value

W(la nmin) = ¢(nmin>'

This may be interpreted as a measure of the energy
dissipated in the muscle during the loading—unloading

o =L () = o, (5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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cycle. In simple tension, ¢(Myi,) is the area between the
loading and the unloading curves. It is therefore
appropriate to refer to ¢ as a dissipation function.
Following Dorfmann & Ogden (2003), we select the
function ¢ to have the form

—¢'(n) = mtanh™ [r(n —1)] + W, (5.9)

where 7 and m/u are dimensionless positive material
parameters, u being the shear modulus of the matrix
material. The explicit form of 7 is obtained from
equations (5.9) and (5.5) and has the form

W, — WO(A)]

1
n= 1—;tanh[ - (5.10)

The variable 1 assumes the minimum value 7,,;, when

A=1, which corresponds to the natural configuration of
the muscle in the animal. It is given by

1 W
Nin = 1 ——tanh [—m] . (5.11)
r m
Finally, integration of equation (5.9) gives the dissipa-
tion explicitly in terms of the variable 7 in the form

¢(77) = _m(n - l)tanh_l[r(n - 1)] - Wm(n

m

-1
) 2r

log[1 —r*(n—1)%. (5.12)

5.2. A specific material model

We now apply the pseudo-elastic reinforcing model to
simulate the passive as well as the stimulated loading—
unloading response of the Manduca muscle shown in
figure 6. Here, we assume that the material is
preconditioned and the muscle characterized by the
repeatable stress—stretch response. A detailed develop-
ment, including experimental data, on preconditioning
and recovery of the Manduca muscle will be given
elsewhere.

The reproducible loading—unloading response of the
muscle in the passive as well as the stimulated state is
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Table 1. Summary of model parameters for loading and
unloading of Manduca muscle in passive and active con-
ditions.

material model parameters

u (Pa) ¢ o c3 r m (Pa)
passive 755.5  86.13 0.0 0.53 1.05 0.0038
active  755.5 86.13 470.0 0.53 1.05 0.0038

shown in figure 7a. The maximum extension achieved is
A=1.15 and the axial nominal stress is the applied load
per unit undeformed cross-sectional area (equation
(3.11)). Therefore, we are modelling the hysteresis
associated with loading—unloading cycles and more
particularly the effect of muscle stimulation on the
macroscopic stiffness. The material is again taken to be
incompressible and transversely isotropic.

The loading of the muscle in passive and stimulated
conditions, shown in figure 7, is fully determined by the
energy function (5.2). The value of the stiffness of
the matrix material, denoted u, is selected so that the
numerical simulation was an appropriate match to the
biological data and is given in table 1.

In equation (5.2), the variable y, is used to describe
the change in strength of the actin and the myosin
myofilaments owing to tetanic stimulation. For the test
data shown in figure 7, we find that the increase in
strength with increasing stimulation and the decrease
with increasing A may be given by

Ue = €1 + cze<17’12)/c3, (5.13)

where ¢;, ¢ and c3 are three dimensionless material
constants. The constant ¢; with ¢ =0 gives the stiffness
of the muscle fibres in the passive state. The value of the
constant c¢,, which depends on the magnitude of
stimulus, describes the increase in strength in the
reference configuration. Finally, the constant cs
describes the change in stimulus with deformation.
We here omit the experimental evidence showing the
reduction of the stimulus with deformation, since a
separate development is in progress. The associated
values are listed in table 1.

The unloading response of the muscle in the passive
and the simulated state is given by equation (5.4) with
n given by equation (5.10). The value of the constants r
and m describing the hysteretic response are listed in
table 1 and the associated numerical results shown in
figure 7b. The fit of the model to the experimental data
of the Manduca muscle in the passive and the
stimulated state is good.

Figure 8 shows the pseudo-energy given by equation
(5.1) and the amount of energy dissipated during cyclic
loading of a Manduca muscle in passive and the
stimulated conditions. On completion of the loading—
unloading cycle, energy is dissipated and the energy
returned upon complete unloading is less than the
energy expended during loading. The amount of
dissipated energy is the smallest for the passive muscle
and increases with the amount of electric stimulus.

J. R. Soc. Interface (2007)
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Figure 8. Plot of the pseudo-energy against the stretch during
loading and unloading of passive (dashed line) and stimulated
(solid line) Manduca muscle. The intercept of the unloading
curves with the vertical axis quantifies the energy dissipated
during one complete loading—unloading cycle.

6. CONCLUDING REMARKS

In this paper, we have presented new experimental data
on the passive and stimulated response of the Manduca
muscle. We have shown that the response is qualitatively
similar to the loading—unloading behaviour of particle-
reinforced rubber; both are capable of large nonlinear
elastic deformations and stress softening during the first
few cycles of periodic loading—unloading. Particle-
reinforced rubber is, in general, an isotropic material;
biological tissues, on the other hand, are composed of an
isotropic base material reinforced with multiple families
of protein fibres. The Manducamuscle is shown to have an
isotropic base material reinforced with fibres that
generates a transversely isotropic response with preferred
direction along the loading direction.

The constitutive relation presented here and used to
describe the response of the Manduca muscle in passive
and stimulated conditions is based on an incompres-
sible neo-Hookean material augmented with a reinfor-
cing model, the latter being a function of the invariant
I, (Qiu & Pence 1997; Merodio & Ogden 2005). A good
agreement is obtained with the experimental data for
both the passive and the stimulated conditions.

It has also been shown that the strength in the fibre
direction, denoted by u., depends on the amount of
tetanic stimulation and deformation. Increasing stimu-
lus provides for a greater strength in the actin and the
myosin myofilaments. The strength parameter u. also
accounts for the interaction between deformation and
stimulus and it is shown that the effect of the
stimulation reduces with increasing deformation.
Experimental data in support of this important
observation will be given elsewhere.

The interaction of the electrical stimulus and
deformation in the Manduca muscle is similar to the
behaviour of electro-sensitive materials (Dorfmann &
Ogden 2005). Both are capable of increasing stiffness
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during stimulation and the effect of the stimulus depends
on the amount of deformation. A detailed study on this
coupled phenomenon in the Manduca muscle is cur-
rently being performed and will be given elsewhere.

From abiological perspective, Manducamuscles have
to serve many functions without the advantage of stiff
levers and joints. The nonlinear mechanical properties
described here for Manduca muscle are likely to have a
profound effect on the way the nervous system controls
movements. One possibility is that by ‘exploiting’ these
complex muscle mechanics, the nervous system can
reduce its computational load and thereby cope with the
high-dimensional workspace, with many degrees of
freedom, inherent in flexible structures. Such mechan-
ical properties contribute to the functionality of
locomotory muscle and associated tissue of more widely
researched animals with hard skeletons and fewer
degrees of freedom ranging from hexapods (Jindrich &
Full 2002; Seipel et al. 2004; Dudek & Full 2006) to
humans (Hof 2003). It is therefore important to include
the pseudo-elastic characteristics of tissues when mod-
elling the control of locomotory muscle, especially with
soft-bodied animals.
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